Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback

TitlePermafrost degradation and methane: low risk of biogeochemical climate-warming feedback
Publication TypeJournal Article
Year of Publication2013
AuthorsGao X., Schlosser C.A, Sokolov A., Anthony K.MWalter, Zhuang Q.L, Kicklighter D.
JournalEnvironmental Research LettersEnvironmental Research LettersEnvironmental Research Letters
Date PublishedJul-Sep
ISBN Number1748-9326
Accession NumberISI:000325247100059
Keywordscarbon, climate feedback, emissions, fluxes, lakes, methane, model, permafrost, thaw, wetlands

Climate change and permafrost thaw have been suggested to increase high latitude methane emissions that could potentially represent a strong feedback to the climate system. Using an integrated earth-system model framework, we examine the degradation of near-surface permafrost, temporal dynamics of inundation (lakes and wetlands) induced by hydro-climatic change, subsequent methane emission, and potential climate feedback. We find that increases in atmospheric CH4 and its radiative forcing, which result from the thawed, inundated emission sources, are small, particularly when weighed against human emissions. The additional warming, across the range of climate policy and uncertainties in the climate-system response, would be no greater than 0.1 degrees C by 2100. Further, for this temperature feedback to be doubled (to approximately 0.2 degrees C) by 2100, at least a 25-fold increase in the methane emission that results from the estimated permafrost degradation would be required. Overall, this biogeochemical global climate-warming feedback is relatively small whether or not humans choose to constrain global emissions.

Short TitleEnviron Res LettEnviron Res Lett
Alternate JournalEnviron Res Lett